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 Estimator (Def.) An “estimator” or “point estimate” is a statistic that is 

used to infer the value of  an unknown parameter in a statistical model. 

 The parameter being estimated is sometimes called the estimand. If  the parameter 

is denoted by 𝜃 then the estimator is typically written by adding a “hat” over the 

symbol, መ𝜃. 

 The attractiveness of  different estimators can be judged by looking at their 

properties, such as unbiasedness, efficiency, consistency, etc.. 

 The construction and comparison of  estimators are the subjects of  estimation 

theory. 
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* Estimator’s properties can be divided into two categories:

 Small Sample Properties

 Unbiasedness

 Efficiency

 Sufficiency

 Large Sample Properties

 Consistency
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SMALL SAMPLE PROPERTIES

1. Unbiasedness: An estimator is said to be unbiased if  its expectation equals 

the value of  the population parameter. That is, if:

Could you show this graphically? – try and get a positive!

Examples:   𝐸 ത𝑋 = 𝜇 (Proof  1)

𝐸 𝑠2 = 𝜎2 (Proof  2)

Remark: Intuitively, an unbiased estimator is ‘right on target’
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𝐸 መ𝜃 = 𝜃, then መ𝜃 is an unbiased estimator of  𝜃
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SMALL SAMPLE PROPERTIES

1. Unbiasedness BIAS 

Let መ𝜃 be an estimator of  𝜃. 

The Bias is defined as the difference between its mean and 𝜃.

Remark: the bias of  an unbiased estimator is equal to 0.
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Bias መ𝜃 = 𝐸 መ𝜃 − 𝜃
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SMALL SAMPLE PROPERTIES

2. Efficiency: An estimator is said to be efficient if  in the class of  unbiased 

estimators it has minimum variance. See this in more detail:

• Suppose there are several unbiased estimators of  𝜃.

• The Most Efficient Estimator (or Minimum Variance Unbiased Estimator) 

is the unbiased estimator with the smaller variance. 

• Example: Let መ𝜃1 and መ𝜃2 be the two unbiased estimators of  𝜃, based on the 

same number of  observations. Then
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መ𝜃1 is said to be more efficient than መ𝜃2 if 𝑉𝑎𝑟( መ𝜃1) < 𝑉𝑎𝑟( መ𝜃2)
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SMALL SAMPLE PROPERTIES

2. Efficiency Relative Efficiency
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Relative efficiency =
Var(𝜃2)
Var(𝜃1)
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SMALL SAMPLE PROPERTIES

2. Efficiency: 

And, what happens when there is conflict between efficiency and unbiasedness??? (i.e. 
መ𝜃1 is unbiased, መ𝜃2 is biased but 𝑉𝑎𝑟 መ𝜃1 > 𝑉𝑎𝑟( መ𝜃2))

- In these cases, we need to compute the Mean Square Error (MSE):

𝑀𝑆𝐸 መ𝜃 = 𝑉𝑎𝑟 መ𝜃 + bias መ𝜃
2

- Remark: for an unbiased estimator, the MSE is simply the variance of  

the estimator
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መ𝜃2 is preferred to መ𝜃1 if 𝑀𝑆𝐸 መ𝜃2 < 𝑀𝑆𝐸( መ𝜃1)
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SMALL SAMPLE PROPERTIES

3. Sufficiency: We say that an estimator is sufficient if  it uses all the sample 

information. 

• The median, because it considers only rank, is not sufficient.

• The sample mean considers each member of  the sample as well as its size, 

so is a sufficient statistic. Or, given the sample mean, the distribution of  no 

other statistic can contribute more information about the population 

mean.
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LARGE SAMPLE PROPERTIES

4. Consistency: 

• Let መ𝜃 be an estimator of  𝜃. 

• መ𝜃 is a consistent estimator of  𝜃 if  the difference between the expected 

value of  መ𝜃 and 𝜃 decreases as the sample size increases.

• Consistent estimators are desirable when unbiased estimators can not be 

obtained. 
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SUMS OF RANDOM VARIABLES

Let 𝑋1, 𝑋2,…, 𝑋𝐾 𝐾 random variables with means 𝜇1, 𝜇2,…, 𝜇𝐾 and variances 

𝜎1
2, 𝜎2

2, …, 𝜎𝐾
2. The following properties are satisfied:

1. The mean of  its sum is the sum of  their means, that is,

𝐸(𝑋1 + 𝑋2 +… + 𝑋𝐾) = 𝜇1 + 𝜇2 +…+ 𝜇𝐾

2. If  the covariance between each pair of  these random variables is 0, then the 

variance of  the sum is the sum of  their variances, that is,

Var(𝑋1 + 𝑋2 +… + 𝑋𝐾) = 𝜎1
2+ 𝜎2

2+ …+ 𝜎𝐾
2

However, if the covariance between pair of  random variables is not 0, 

Var(𝑋1 + 𝑋2 +… + 𝑋𝐾) = 𝜎1
2+ 𝜎2

2+ …+ 𝜎𝐾
2 + 2σ𝑖=1

𝐾−1σ𝑗=𝑖+1
𝐾 𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗)
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DIFFERENCES BETWEEN A PAIR OF RANDOM VARIABLES

Let 𝑋 and 𝑌 a pair of  random variables with means 𝜇𝑋 and 𝜇𝑌 and variances 

𝜎𝑋
2, 𝜎𝑌

2. The following properties are satisfied:

1. The mean of  its difference is the difference of  their means, that is,

𝐸(𝑋 − 𝑌) = 𝜇𝑋 − 𝜇𝑌

2. If  the covariance between 𝑋 and 𝑌 is 0, then the variance of  its difference is 

Var(𝑋 − 𝑌) = 𝜎𝑋
2+ 𝜎𝑌

2

3. If the covariance between 𝑋 and 𝑌 is not 0, then the variance of  its 

difference is 

Var(𝑋 − 𝑌) = 𝜎𝑋
2+ 𝜎𝑌

2 − 2Cov(𝑋, 𝑌)
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LINEAR COMBINATION OF RANDOM VARIABLES

The linear combination of  two random variables 𝑋 and 𝑌 is: 𝑍 = 𝑎𝑋 + 𝑏𝑌

where 𝑎 and 𝑏 are constants.

1. The mean value of  𝑍 is

𝜇𝑍 = 𝐸(𝑍) = 𝐸 𝑎𝑋 + 𝑏𝑌 = 𝑎𝜇𝑋 + 𝑏𝜇𝑌

2. The variance of  𝑍 is

𝜎𝑍
2 = 𝑎2𝜎𝑋

2 + 𝑏2𝜎𝑌
2 + 2𝑎𝑏Cov(𝑋, 𝑌)

Or using the correlation,

𝜎𝑍
2 = 𝑎2𝜎𝑋

2 + 𝑏2𝜎𝑌
2 + 2𝑎𝑏Corr(𝑋, 𝑌)𝜎𝑋𝜎𝑌
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