ECONOMETRICS

2017-2018

Ainara González de San Román agod@faculty.ie.edu

(Chapter 6-8 : Newbold)

- Estimator (Def.) An "estimator" or "point estimate" is a statistic that is used to infer the value of an unknown parameter in a statistical model.
 - The parameter being estimated is sometimes called the *estimand*. If the parameter is denoted by θ then the estimator is typically written by adding a "hat" over the symbol, $\hat{\theta}$.
 - The attractiveness of different estimators can be judged by looking at their properties, such as unbiasedness, efficiency, consistency, etc..
 - The construction and comparison of estimators are the subjects of <u>estimation</u> <u>theory</u>.

* Estimator's properties can be divided into two categories:

- Small Sample Properties
 - Unbiasedness
 - Efficiency
 - Sufficiency
- Large Sample Properties
 - Consistency

SMALL SAMPLE PROPERTIES

Unbiasedness: An estimator is said to be unbiased if its expectation equals the value of the population parameter. That is, if:

 $E(\hat{\theta}) = \theta$, then $\hat{\theta}$ is an unbiased estimator of θ

Could you show this graphically? – try and get a positive!

Examples:	$E(\bar{X}) = \mu$	(Proof 1)
	$E(s^2) = \sigma^2$	(<i>Proof 2</i>)

Remark: Intuitively, an unbiased estimator is 'right on target'

Estimator and Its Properties

SMALL SAMPLE PROPERTIES

<u>Unbiasedness</u>

 \rightarrow <u>BIAS</u>

Let $\hat{\theta}$ be an estimator of θ .

The Bias is defined as the difference between its mean and θ .

$$\operatorname{Bias}(\hat{\theta}) = E(\hat{\theta}) - \theta$$

Remark: the bias of an unbiased estimator is equal to 0.

SMALL SAMPLE PROPERTIES

- **Efficiency**: An estimator is said to be efficient if in the class of unbiased estimators it has minimum variance. See this in more detail:
 - Suppose there are several unbiased estimators of θ .
 - The Most Efficient Estimator (or Minimum Variance Unbiased Estimator) is the unbiased estimator with the smaller variance.
 - **Example**: Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be the two unbiased estimators of θ , based on the same number of observations. Then

 $\hat{\theta}_1$ is said to be more efficient than $\hat{\theta}_2$ if $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$

SMALL SAMPLE PROPERTIES

Efficiency -----> Relative Efficiency

Relative efficiency =
$$\frac{\operatorname{Var}(\widehat{\theta}_2)}{\operatorname{Var}(\widehat{\theta}_1)}$$

Estimator and Its Properties

SMALL SAMPLE PROPERTIES

Efficiency:

And, what happens when there is <u>conflict between efficiency and unbiasedness</u>??? (i.e. $\hat{\theta}_1$ is unbiased, $\hat{\theta}_2$ is biased but $Var(\hat{\theta}_1) > Var(\hat{\theta}_2)$)

- In these cases, we need to compute the Mean Square Error (MSE): $MSE(\hat{\theta}) = Var(\hat{\theta}) + bias(\hat{\theta})^2$

 $\hat{\theta}_2$ is preferred to $\hat{\theta}_1$ if $MSE(\hat{\theta}_2) < MSE(\hat{\theta}_1)$

- **Remark:** for an unbiased estimator, the MSE is simply the variance of the estimator

SMALL SAMPLE PROPERTIES

- **Sufficiency**: We say that an estimator is sufficient if it uses all the sample information.
 - The median, because it considers only rank, is not sufficient.
 - The sample mean considers each member of the sample as well as its size, so is a sufficient statistic. Or, given the sample mean, the distribution of no other statistic can contribute more information about the population mean.

LARGE SAMPLE PROPERTIES

Consistency:

- Let $\hat{\theta}$ be an estimator of θ .
- $\hat{\theta}$ is a consistent estimator of θ if the difference between the expected value of $\hat{\theta}$ and θ decreases as the sample size increases.
- Consistent estimators are desirable when unbiased estimators can not be obtained.

Appendix

SUMS OF RANDOM VARIABLES

Let $X_1, X_2, ..., X_K$ K random variables with means $\mu_1, \mu_2, ..., \mu_K$ and variances $\sigma_1^2, \sigma_2^2, ..., \sigma_K^2$. The following properties are satisfied:

1. The mean of its sum is the sum of their means, that is, $E(X_1 + X_2 + ... + X_K) = \mu_1 + \mu_2 + ... + \mu_K$

2. If the covariance between each pair of these random variables is 0, then the variance of the sum is the sum of their variances, that is,

$$Var(X_1 + X_2 + ... + X_K) = \sigma_1^2 + \sigma_2^2 + ... + \sigma_K^2$$

However, if the covariance between pair of random variables is not 0, $Var(X_1 + X_2 + ... + X_K) = \sigma_1^2 + \sigma_2^2 + ... + \sigma_K^2 + 2\sum_{i=1}^{K-1} \sum_{j=i+1}^{K} Cov(X_i, X_j)$

Appendix

DIFFERENCES BETWEEN A PAIR OF RANDOM VARIABLES

Let X and Y a pair of random variables with means μ_X and μ_Y and variances σ_X^2 , σ_Y^2 . The following properties are satisfied:

1. The mean of its difference is the difference of their means, that is,

$$E(X-Y) = \mu_X - \mu_Y$$

- 2. If the covariance between X and Y is 0, then the variance of its difference is $Var(X - Y) = \sigma_X^2 + \sigma_Y^2$
- 3. If the covariance between X and Y is not 0, then the variance of its difference is

$$Var(X - Y) = \sigma_X^2 + \sigma_Y^2 - 2Cov(X, Y)$$

Appendix

LINEAR COMBINATION OF RANDOM VARIABLES

The linear combination of two random variables X and Y is: Z = aX + bY where a and b are constants.

1. The mean value of Z is

$$\mu_Z = E(Z) = E(aX + bY) = a\mu_X + b\mu_Y$$

2. The variance of Z is

$$\sigma_Z^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab \text{Cov}(X, Y)$$

Or using the correlation,

$$\sigma_Z^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab \operatorname{Corr}(X, Y) \sigma_X \sigma_Y$$